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1 Terminated Transmission Lines

Figure 1:

For an infinitely long transmission line, the solution consists of the linear su-
perposition of a wave traveling to the right plus a wave traveling to the left. If
transmission line is terminated by a load as shown in Figure 1, a right-traveling
wave will be reflected by the load, and in general, the wave on the transmission
line will be a linear superposition of the left and right traveling waves. We will
first assume that the line is lossy first and specialize it to the lossless case later.
Thus,

V (z) = a+e
−γz + a−e

γz = V+(z) + V−(z) (1.1)

At z = 0, we can define the amplitude of the left-going reflected wave a− to
be linearly related to the amplitude of the right-going or incident wave a+. In
other words, at z = 0,

V−(z = 0) = ΓLV+(z = 0) (1.2)

thus,

a− = ΓLa+ (1.3)

where ΓL is the reflection coefficient. Hence, (1.1) becomes

V (z) = a+e
−γz + ΓLa+e

γz = a+

(
e−γz + ΓLe

γz
)

(1.4)

The corresponding current I(z) on the transmission line is given by using the
telegrapher’s equations from the previous lecture, namely that

I(z) = − 1

Z

dV

dz
=
a+

Z
γ(e−γz − ΓLe

γz) (1.5)

where γ =
√
ZY =

√
(jωL+R)(jωC +G), and Z = jωL+R and Y = jωC+G.

Hence, Z/γ =
√
Z/Y = Z0, the characteristic impedance of the transmission

line. Thus, from (1.5),

I(z) =
a+

Z0

(
e−γz − ΓLe

γz
)

(1.6)
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Notice the sign change in the second term of the above expression.
Similar to ΓL, a general reflection coefficient relating the left traveling and

right traveling wave at z can be defined such that

Γ(z) =
V−(z) = a−e

γz

V+(z) = a+e−γz
=

a−e
γz

a+e−γz
= ΓLe

2γz (1.7)

Of course, Γ(z = 0) = ΓL. Furthermore, we must have

V (z = 0)

I(z = 0)
= ZL (1.8)

or that using (1.4) and (1.5) with z = 0, the left-hand side of the above can be
rewritten, and we have

1 + ΓL
1− ΓL

Z0 = ZL (1.9)

From the above, we can solve for ΓL in terms of ZL/Z0 to get

ΓL =
ZL/Z0 − 1

ZL/Z0 + 1
=
ZL − Z0

ZL + Z0
(1.10)

Thus, given the termination load ZL, the reflection coefficient ΓL can be found,
or vice versa. It is seen that ΓL = 0 if ZL = Z0. Thus a right-traveling wave will
not be reflected and the left-traveling is absent. This is the case of a matched
load. When there is no reflection, all energy of the right-traveling wave will be
totally absorbed by the load.

In general, we can define a generalized impedance at z 6= 0 to be

Z(z) =
V (z)

I(z)
=

a+(e−γz + ΓLe
γz)

1
Z0
a+(e−γz − ΓLeγz)

= Z0
1 + ΓLe

2γz

1− ΓLe2γz
= Z0

1 + Γ(z)

1− Γ(z)
(1.11)

where Γ(z) is as defined in (1.7). Conversely, one can write the above as

Γ(z) =
Z(z)− Z0

Z(z) + Z0
(1.12)

Usually, a transmission line is lossless, and for most practical purpose, γ =
jβ. In this case, (1.11) becomes

Z(z) = Z0
1 + ΓLe

2jβz

1− ΓLe2jβz
(1.13)

From the above, one can show that by setting z = −l, using (1.10), and after
some algebra,

Z(−l) = Z0
ZL + jZ0 tanβl

Z0 + jZL tanβl
(1.14)
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1.1 Shorted Terminations

Figure 2:

From (1.14) above, when we have a short such that ZL = 0, then

Z(−l) = jZ0 tan(βl) = jX (1.15)

Hence, the impedance remains reactive (pure imaginary) for all l, and can swing
over all positive and negative imaginary values. One way to understand this is
that when the transmission line is shorted, the right and left traveling wave set
up a standing wave with nodes and anti-nodes. At the nodes, the voltage is
zero while the current is maximum. At the anti-nodes, the current is zero while
the voltage is maximum. Hence, a node resembles a short while an anti-node
resembles an open circuit. Therefore, at z = l, different reactive values can be
observed as shown in Figure 2.

When β � l, then tanβl ≈ βl, and (1.15) becomes

Z(−l) ∼= jZ0βl (1.16)

After using that Z0 =
√
L/C and that β = ω

√
LC, (1.16) becomes

Z(−l) ∼= jωLl (1.17)

The above implies that a short length of transmission line connected to a
short as a load looks like an inductor with Leff = Ll, since much current will
pass through this short producing a strong magnetic field with stored magnetic
energy. Remember here that L is the line inductance, or inductance per unit
length.
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1.2 Open terminations

Figure 3:

When we have an open circuit such that ZL =∞, then from (1.14) above

Z(−l) = −jZ0 cot(βl) = jX (1.18)

Again, as shown in Figure 3, the impedance at z = −l is purely reactive, and
goes through positive and negative values due to the standing wave set up on
the transmission line.

Then, when βl� l, cot(βl) ≈ 1/βl

Z(−l) ≈ −j Z0

βl
(1.19)

And then, again using β = ω
√
LC, Z0 =

√
L/C

Z(−l) ≈ 1

jωCl
(1.20)

Hence, an open-circuited terminated short length of transmission line appears
like an effective capacitor with Ceff = Cl. Again, remember here that C is line
capacitance or capacitance per unit length.

But the changing length of l, one can make a shorted or an open terminated
line look like an inductor or a capacitor depending on its length l. This effect is
shown in Figures 2 and 3. Moreover, the reactance X becomes infinite or zero
with the proper choice of the length l. These are resonances or anti-resonances
of the transmission line, very much like an LC tank circuit. An LC circuit can
look like an open or a short circuit at resonances and depending on if they are
connected in parallel or in series.
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2 Smith Chart

In general, from (1.13) and (1.14), a length of transmission line can transform a
load ZL to a range of possible complex values Z(−l). To understand this range
of values better, we can use the Smith chart (invented by P.H. Smith 1939
before the advent of the computer). The Smith chart is essentially a graphical
calculator for solving transmission line problems. Equation (1.12) indicates that
there is a unique map between the impedance Z(z) and reflection coefficient
Γ(z). In the normalized impedance form where Zn = Z/Z0, from (1.11) and
(1.12)

Γ =
Zn − 1

Zn + 1
, Zn =

1 + Γ

1− Γ
(2.1)

Equations in (2.1) are related to a bilinear transform in complex variables. It
is a kind of conformal map that maps circles to circles. Such a map is shown
in Figure 4, where lines on the right-half of the complex Zn plane are mapped
to the circles on the complex Γ plane. Since straight lines on the complex Zn
plane are circles with infinite radii, they are mapped to circles on the complex
Γ plane. The Smith chart allows one to obtain the corresponding Γ given Zn
and vice versa as indicated in (2.1), but using a graphical calculator.

Notice that the imaginary axis on the complex Zn plane maps to the circle
of unit radius on the complex Γ plane. All points on the right-half plane are
mapped to within the unit circle. The reason being that the right-half plane
of the complex Zn plane corresponds to passive impedances that will absorb
energy. Hence, such an impedance load will have reflection coefficient with
amplitude less than one, which are points within the unit circle.

On the other hand, the left-half of the complex Zn plane corresponds to
impedances with negative resistances. These will be active elements that can
generate energy, and hence, yielding |Γ| > 1, and will be outside the unit circle
on the complex Γ plane.

Another point to note is that points at infinity on the complex Zn plane map
to the point at Γ = 1 on the complex Γ plane, while the point zero on the complex
Zn plane maps to Γ = −1 on the complex Γ plane. These are the reflection
coefficients of an open-circuit load and a short-circuit load, respectively. For a
matched load, Zn = 1, and it maps to the zero point on the complex Γ plane
implying no reflection.
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Figure 4:

The Smith chart also allows one to quickly evaluate the expression

Γ(−l) = ΓLe
−2jβl (2.2)

and its corresponding Zn. Since β = 2π/λ, it is more convenient to write βl =
2πl/λ, and measure the length of the transmission line in terms of wavelength.
To this end, the above becomes

Γ(−l) = ΓLe
−4jπl/λ (2.3)

For increasing l, one moves away from the load to the generator, l increases,
and the phase is decreasing because of the negative sign. So given a point for
ΓL on the Smith chart, one has negative phase or decreasing phase by rotating
the point clockwise. Also, due to the exp(−4jπl/λ) dependence of the phase,
when l = λ/4, the reflection coefficient rotates a half circle around the chart.
And when l = λ/2, the reflection coefficient will rotate a full circle, or back to
the original point.

Also, for two points diametrically opposite to each other on the Smith chart,
Γ changes sign, and it can be shown easily that the normalized impedances are
reciprocal of each other. Hence, the Smith chart can also be used to find the
reciprocal of a complex number quickly. A full blown Smith chart is shown in
Figure 5.
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Figure 5:

3 VSWR (Voltage Standing Wave Ratio)

The standing wave V (z) is a function of position z on a terminated transmission
line and it is given as

V (z) = V0e
−jβz + V0e

jβzΓL

= V0e
−jβz (1 + ΓLe

2jβz
)

= V0e
−jβz (1 + Γ(z)) (3.1)

where we have used (1.7) for Γ(z) with γ = jβ. Hence, V (z) is not a constant
or independent of z, but

|V (z)| = |V0||1 + Γ(z)| (3.2)

In Figure 6, the relationship variation of 1 + Γ(z) as z varies is shown.
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Figure 6:

Using the triangular inequality, one gets

|V0|(1− |Γ(z)|) ≤ |V (z)| ≤ |V0|(1 + |Γ(z)|) (3.3)

But from (1.7) and that γ = jβ, |Γ(z)| = |ΓL|; hence

Vmin = |V0|(1− |ΓL|) ≤ |V (z)| ≤ |V0|(1 + |ΓL|) = Vmax (3.4)

The voltage standing wave ratio, VSWR is defined to be

VSWR =
Vmax

Vmin
=

1 + |ΓL|
1− |ΓL|

(3.5)

Conversely,

|ΓL| =
VSWR− 1

VSWR + 1
(3.6)

Hence, the knowledge of voltage standing wave pattern, as shown in Figure 7,
yields the knowledge of |ΓL|. Notice that the relations between VSWR and |ΓL|
are homomorphic to those between Zn and Γ. Therefore, the Smith chart can
also be used to evaluate the above equations.
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Figure 7:

The phase of ΓL can also be determined from the measurement of the voltage
standing wave pattern. The location of ΓL in Figure 6 is determined by the phase
of ΓL. Hence, the value of d1 in Figure 6 is determined by the phase of ΓL as
well. The length of the transmission line waveguide needed to null the original
phase of ΓL to bring the voltage standing wave pattern to a maximum value
at z = −d1 is shown in Figure 7. Hence, d1 is the value where the following
equation is satisfied:

|ΓL|ejφLe−4πj(d1/λ) = |ΓL| (3.7)

Thus, by measuring the voltage standing wave pattern, one deduces both the
amplitude and phase of ΓL. From the complex value ΓL, one can determine ZL,
the load impedance.

Hence, measuring the impedance of a device at microwave frequency is a
tricky business. At low frequency, one can use an ohm meter with two wire
probes to do such a measurement. But at microwave frequency, two pieces
of wire become inductors, and two pieces of metal become capacitors. More
sophisticated ways to measure the impedance need to be designed as described
above.

In the old days, the voltage standing wave pattern was measured by a slotted-
line equipment which consists of a coaxial waveguide with a slot opening as
shown in Figure 8. A field probe can be put into the slotted line to determine
the strength of the electric field inside the coax waveguide.
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Figure 8: Courtesy of Microwave101.com.

A typical experimental setup for a slotted line measurement is shown in
Figure 9. A generator source, with low frequency modulation, feeds microwave
energy into the coaxial waveguide. The isolator, allowing only the unidirec-
tional propagation of microwave energy, protects the generator. The attenuator
protects the slotted line equipment. The wavemeter is an adjustable resonant
cavity. When the wavemeter is tuned to the frequency of the microwave, it
siphons off some energy from the source, giving rise to a dip in the signal of the
SWR meter. Hence, the wavemeter measures the frequency of the microwave.

The slotted line probe is usually connected to a square law detector that
converts the microwave signal to a low-frequency signal. In this manner, the
amplitude of the voltage in the slotted line can be measured with some low-
frequency equipment, such as the SWR meter. Low-frequency equipment is a
lot cheaper to make and maintain. That is also the reason why the source is
modulated with a low-frequency signal.

The above describes how the impedance of the device-under-test (DUT) can
be measured at microwave frequencies. Nowadays, automated network analyz-
ers make these measurements a lot simpler in a microwave laboratory. Notice
that the above is based on the interference of the two traveling wave on a termi-
nated transmission line. Such interference experiments are increasingly difficult
in optical frequencies because of the much shorter wavelengths. Hence, many ex-
periments are easier to perform at microwave frequencies rather than at optical
frequencies.

Many technologies are first developed at microwave frequency, and later
developed at optical frequency. Examples are phase imaging, optical coherence
tomography, and beam steering with phase array sources. Another example
is that quantum information and quantum computing can be done at optical
frequency, but the recent trend is to use artificial atoms working at microwave
frequencies. Engineering with longer wavelength and larger component is easier;
and hence, microwave engineering.

Another new frontier in the electromagnetic spectrum is in the terahertz
range. Due to the dearth of sources, and the added difficulty in having to
engineer smaller components, this is an exciting and a largely untapped frontier
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in electromagnetic technology.

Figure 9: Courtesy of Pozar and Knapp, U. Mass.
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